

Warranty

"PRODUCTS MANUFACTURED BY CAMPBELL SCIENTIFIC, INC. are warranted by Campbell Scientific, Inc. ("Campbell") to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless otherwise specified in the corresponding Campbell pricelist or product manual. Products not manufactured, but that are re-sold by Campbell, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. Campbell's obligation under this warranty is limited to repairing or replacing (at Campbell's option) defective products, which shall be the sole and exclusive remedy under this warranty. The customer shall assume all costs of removing, reinstalling, and shipping defective products to Campbell. Campbell will return such products by surface carrier prepaid within the continental United States of America. To all other locations, Campbell will return such products best way CIP (Port of Entry) INCOTERM® 2010, prepaid. This warranty shall not apply to any products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by Campbell such as programming to customer specifications, electrical connections to products manufactured by Campbell, and product specific training, is part of Campbell's product warranty. CAMPBELL EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Campbell is not liable for any special, indirect, incidental, and/or consequential damages."

Assistance

Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit *www.campbellsci.com* to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. Campbell Scientific's shipping address is:

CAMPBELL SCIENTIFIC, INC.

RMA#_______ 815 West 1800 North Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and Decontamination" form and comply with the requirements specified in it. The form is available from our web site at *www.campbellsci.com/repair*. A completed form must be either emailed to *repair@campbellsci.com* or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer's expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.

Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1.	Introduction	1
2.	Cautionary Statements	1
3.	Initial Inspection	1
	3.1 Ships With	2
4.	Quickstart	2
	 4.1 Step 1 — Mount the Probe 4.2 Step 2 — Use Short Cut Program Generator for Windows (SCW to Program Datalogger and Generate Wiring Diagram 	2 in) 4
5.	Overview	6
6.	Specifications	8
	6.1 Temperature Sensor6.2 Relative Humidity Sensor	10 10
7.	Installation	11
	 7.1 Siting	11 11 13 15 15 16 17 17 18 19 20
	7.6.2 CR10(X) Program that Computes Vapor Pressure and Saturation Vapor Pressure	20

8.	Sensor Mai	intenance	21
	8.1 Per	riodic Maintenance	
	8.1.1 8.1.2	Changing the Probe Filter	
9.	Troublesho	ooting	23
10	. References		24

Appendix

Α.	Interfacing with HMP155A RS485 Output	A-1
	A.1 RS485 Interface Options	A-1
	A.2 SDM-SIO1 Serial I/O Module Interface Option	A-1
	A.2.1 Program Example for SDM-SIO1 Module	
	A.3 MD485 Multidrop Interface Option	
	A.3.1 MD485 Multidrop Interface Configuration	
	A.3.2 CR1000 Example Program for use with MD485.	

Figures

4-1.	HMP155A and 14-plate radiation shield on a tripod mast	
4-2.	HMP155A and 14-plate radiation shield on a CM200-series	
	crossarm	3
6-1.	Probe dimensions	8
6-2.	Wiring of HMP155A 8-pin connector	9
8-1.	Changing the filter	22

Tables

5-1.	Recommended Lead Lengths	7
7-1.	Connections for Single-Ended Measurements	
7-2.	Connections for Differential Measurements	
7-3.	Power Connections using SW12V Power Switch	
7-4.	Parameters for Temperature	
7-5.	Parameters for Relative Humidity	
7-6.	Wiring for Single-ended Measurement Examples	
7-7.	Wiring for Differential Measurement Examples	
7-8.	Wiring for Vapor Pressure Examples	
8-1.	Chemical Tolerances of HMP155A	

Model HMP155A Temperature and Relative Humidity Probe

1. Introduction

The HMP155A probe monitors relative humidity (RH) for the range of 0 to 100% RH and temperature for the range of -80° to $+60^{\circ}$ C. It can provide reliable measurements for a wide range of applications, as part of a weather station system or as a single instrument. All Campbell Scientific dataloggers are compatible.

Before using the HMP155A, please study

- Section 2, Cautionary Statements
- Section 3, Initial Inspection
- Section 4, *Quickstart*

More details are available in the remaining sections.

2. Cautionary Statements

- Care should be taken when opening the shipping package to not damage or cut the cable jacket. If damage to the cable is suspected, consult a Campbell Scientific applications engineer.
- Although the HMP155A is rugged, it should be handled as a precision scientific instrument.
- Do not touch the sensor element.
- The black outer jacket of the cable is Santoprene® rubber. This compound was chosen for its resistance to temperature extremes, moisture, and UV degradation. However, this jacket will support combustion in air. It is rated as slow burning when tested according to U.L. 94 H.B. and will pass FMVSS302. Local fire codes may preclude its use inside buildings.

3. Initial Inspection

- Upon receipt of the HMP155A, inspect the packaging and contents for damage. File damage claims with the shipping company.
- The model number and cable length are printed on a label at the connection end of the cable. Check this information against the shipping documents to ensure the correct product and cable length are received.
- Refer to the Ships With list to ensure that parts are included (see Section 3.1).

3.1 Ships With

The HMP155A ships with:

- (1) Adjustment Screwdriver from manufacturer
- (1) Calibration Sheet
- (1) Instruction Manual or ResourceDVD

4. Quickstart

4.1 Step 1 — Mount the Probe

Review Section 7, *Installation*, for complete instructions. To install the HMP155A, you will need:

- 41005-5 Radiation Shield
- 1. Loosen the split-nut on the bottom plate of the 41005-5 14-plate radiation shield.
- 2. Remove the yellow protective cap on the HMP155A, and insert the sensor into the shield.
- 3. Tighten the hex plug such that it compresses against the body of the HMP155A to hold it inside the radiation shield.
- 4. Attach the radiation shield to the tripod mast, crossarm, or tower leg using the supplied U-bolt. See FIGURE 4-1 and FIGURE 4-2 for examples of shield mounting.
- 5. Route the cable to the datalogger, and secure the cable to the mounting structure using cable ties.

FIGURE 4-1. HMP155A and 14-plate radiation shield on a tripod mast

FIGURE 4-2. HMP155A and 14-plate radiation shield on a CM200-series crossarm

4.2 Step 2 — Use Short Cut Program Generator for Windows (SCWin) to Program Datalogger and Generate Wiring Diagram

The simplest method for programming the datalogger to measure the HMP155A is to use Campbell Scientific's SCWin.

1. Open Short Cut and click on New Program.

2. Select a datalogger and scan interval.

Short Cut (CR1000) C:\Ca	mpbellsci\SCWin\hmp155a.SCW Scan Interval = 20.0000 Sec	conds
<u>File Program Tools H</u> e	elp	
Progress 1. New/Open • 2. Datalogger 3. Sensors	Datalogger Model	Select the Datalogger Model for which you wish to create a program.
4. Outputs	Scan Interval	Select the Scan Interval.
5. Finish	20 Seconds -	This is how frequently
Wiring Diagram Wiring Text		
	Previous Next	Finish Help

3. Select **HMP155 Temperature and Relative Humidity Sensor** and choose either constant power or panel switched power (uses less current), then click the **right arrow** to add it to the list of sensors to be measured.

 Define the name of the public variables. Variables default to AirTC and RH that hold the air temperature and relative humidity measurements. Select the desired units of measure. Units default to Deg C.

IMP:	155 (p	anel switcl	hed power) (Version: 1.1))	a lastanti	_ 0	×
Proper	ties	Wiring					
			Temperature	AirTC	Deg C 🔻		
			Relative Humidity	RH	%		
			r				
			Vaisala HMP155 (p Relative Humidity S Units for Air Temp	anel switched powe Sensor erature: Deg C, Deg	er) Temperature ; g F, K	and	
		- and the second	Units for Relative I	Humidity: %			ш
	-		The HMP155 has a therefore your pro seconds if the sen datalogger. If you	a five second settlin gram scan rate mus isor is being switche r program scan rate	g time after pow at be greater that ed on and off by a is not greater th	er up, n five the nan five	
			seconds you must	use the "constant	power" measuren	nent option	-
				0	K Cancel	Help	

Short Cut (CR1000) C:\Car File Program Tools Hel	npbellsci\SCWin\hmp155a.SCW	Scan Interval = 20.	0000 Seconds		
Eile Program Tools He Progress 1. New/Open 2. Datalogger 3. Sensors 4. Outputs 5. Finish Wiring Wiring Diagram Wiring Text	P Selected Sensors A CR1000 Default BattV PTemp_C A HMP155 AirTC RH	Average ETo Maximum Minimum Sample StdDev Total WindVector	Selected Outputs Table Name Tat Store Every 60 PCCard SC115 CS I/O Sensor asureme HMP155 AirTC HMP155 AirTC HMP155 AirTC	-to-USB Flash I occessin tput I Maximur AirTC Minimun AirTC Sample AirTC	Inutes Memory Driv Lal Units Model C
Wiring Text	Advanced Outputs (all t	ables)	HMP155 RH HMP155 RH HMP155 RH HMP155 RH L L Table1 /2 Table Delete Table	Maximur RH_M Minimun RH_M Sample RH able2 / Edit	A> % IN % %

5. Choose the outputs for the AirTC and RH and then select finish.

6. Wire according to the wiring diagram generated by SCWin.

Short Cut (CR1000) C:\Ca	ampbellsci\SCWin\untitled.scw Scan Interval = 20.0000 Seconds	
<u>File P</u> rogram <u>T</u> ools <u>H</u> e	<u>telp</u>	
Progress	CR1000	
1. New/Open	CR1000 Wiring Diagram for untitled.scw (Wiring details can be found in the help file.)	
2. Datalogger		
3. Sensors	HMP155 (PS) - AirTC, RH CR1000	
4. Outputs	Yellow 1H	
5. Finish	Blue IL Clear \pm (Ground)	
	Black \perp (Ground)	
Wiring	White $\frac{1}{2}$ (Ground)	
→Wiring Diagram	Red 5W-12	
Wiring Text		
	Print	
	Previous Next Finish Help	

5. Overview

The HMP155A Temperature and Relative Humidity probe contains a Platinum Resistance Temperature detector (PRT) and a Vaisala HUMICAP[®] 180 capacitive relative humidity sensor.

The HMP155A outputs a 0 to 1 Vdc signal for temperature and relative humidity that can be measured by all models of Campbell Scientific dataloggers with model HMP155ACBL1 cable. The HMP155A also has

RS485 outputs for temperature and relative humidity that can be interfaced to the CR800, CR1000, and CR3000 dataloggers with model HMP155ACBL2 cable and the SDM-SIO1 Serial I/O Module as described in Appendix A. Enabling the RS485 outputs will result in higher current drain than listed in the specifications.

The HMP155A can be powered continuously or the power may be switched to conserve battery life. The HMP155A consumes less than 3 milliamperes current at 12 volts. Approximately 2 seconds is required for the sensor to warm up after power is switched on. At measurement rates slower than once per 5 seconds, the overall power consumption (datalogger and sensors) may be reduced by switching power to the HMP155A. Most current Campbell Scientific dataloggers have a built-in switched 12 volts that can be used to control power.

NOTE HMP155 sensors purchased directly from Vaisala with serial numbers < E4430001 require approximately 5 seconds warm up time.

The CR9000, CR510, CR500, CR7, CR10, and 21X dataloggers do not have a built-in switched 12 volts. Users with these dataloggers can power the sensor continuously or purchase the model SW12V to switch power.

The -L option on the model HMP155A Temperature and Relative Humidity probe (HMP155A-L) indicates that the cable length is user specified. TABLE 5-1 gives the recommended lead length for mounting the sensor at the top of the tripod/tower with a 2 foot crossarm. Lead length can be 2 feet shorter when the sensor is mounted to the tripod mast / tower leg without a crossarm.

		TABLE 5-1	. Recomme	nded Lead L	engths		
CM6	CM10	CM110	CM115	CM120	UT10	UT20	UT30
11'	14'	14'	19'	24'	14'	24'	37'

The probe's cable can terminate in:

- Pigtails that connect directly to a Campbell Scientific datalogger (option –PT).
- Connector that attaches to a prewired enclosure (option –PW). Refer to *www.campbellsci.com/prewired-enclosures* for more information.

6. Specifications

Features:

- Well-suited for long-term, unattended applications
- Accurate and rugged
- Compatible with all Campbell Scientific dataloggers (including the CR200(X) series)

Compatibility

1 2	
Dataloggers:	CR200(X) series CR800 series CR1000 CR3000 CR5000 CR9000(X) CR7X CR510
	CR10(X) CR23X 21X
Operating Environment	
Operating temperature range for humidity measurement:	-80° to +60°C (-112° to +140°F)
Storage temperature range:	-80° to +60°C (-112° to +140°F)
Electromagnetic compatibility:	Complies with EMC standard EN61326-1, Electrical equipment for measurement control and laboratory use - EMC requirements for use in industrial locations

Dimensions in mm (inches)

FIGURE 6-1. Probe dimensions

8-Pin Connector

0507-044

FIGURE 6-2. Wiring of HMP155A 8-pin connector

*HMP155ACBL1 Cable provided by Campbell Scientific
$1 = V_{OUT} 1$ (yellow, temp)
2=no connection
$3=A_{GND}$ (white)
$4 = V_{OUT}2$ (blue, RH)
5=no connection
6=no connection
7=V _{CC} (red)
8=GND (black)
-=SHIELD (clear)

*Note: HMP155ACBL2 for RS485 is described in Appendix A.

Mechanics

Filter:	Sintered PTFE
Housing material:	PC
Housing classification:	IP66
Weight:	86 g (3 oz)
Inputs and Outputs	
Voltage outputs:	0 to 1 V
Average current consumption:	<3 mA (analog output mode)
Operating voltage:	7 to 28 Vdc
Settling time at power-up:	2 s

6.1 Temperature Sensor

Measurement range:

at +20° to +60°C:

-80° to +60°C (-112° to +140°F)

Accuracy with voltage output at -80° to +20°C:

 \pm (0.226 - 0.0028 x temperature) °C \pm (0.055 + 0.0057 x temperature) °C

See graph below

Temperature sensor:

Pt 100 RTD 1/3 Class B IEC 751

Response time (63 %) for additional temperature probe in 3 m/s air flow:

63% <20 s 90% <35 s

6.2 Relative Humidity Sensor

Measurement range:	0 to 100%	% RH
Accuracy (including non-linearity, hysteresis and repeatability) at +15° to 25°C (59 to 77°F): at -20° to +40°C (-4° to 104°F): at -40° to -20°C (-40° to -4°F): at +40° to +60°C (104° to 140°F): at -60° to -40°C (-76° to -40°F):	$\pm 1\%$ RH $\pm 1.7\%$ R $\pm (1.0 + 0)$ $\pm (1.2 + 0)$ $\pm (1.2 + 0)$ $\pm (1.2 + 0)$ $\pm (1.4 + 0)$	(0 to 90% RH) H (90 to 100% RH) 0.008 × reading) % RH 0.012 × reading) % RH 0.012 × reading) % RH 0.032 × reading) % RH
Factory calibration uncertainty (+20°C):	$\pm 0.6\%$ R $\pm 1.0\%$ R (Defined limits. Sr see also c	H (0 to 40% RH) H (40 to 97% RH) as ±2 standard deviation nall variations possible, calibration certificate.)
Humidity sensor:	HUMICA	AP®180R
Response time for HUMICAP®180R(C) at 20°C in still air with sintered PTFE filter:	63% 90%	20 s 60 s

NOTE The black outer jacket of the cable is Santoprene[®] rubber. This compound was chosen for its resistance to temperature extremes, moisture, and UV degradation. However, this jacket will support combustion in air. It is rated as slow burning when tested according to U.L. 94 H.B. and will pass FMVSS302. Local fire codes may preclude its use inside buildings.

7. Installation

7.1 Siting

Sensors should be located over an open level area at least 9 m (EPA) in diameter. The surface should be covered by short grass, or where grass does not grow, the natural earth surface. Sensors should be located at a distance of at least four times the height of any nearby obstruction, and at least 30 m (EPA) from large paved areas. Sensors should be protected from thermal radiation, and adequately ventilated.

Standard measurement heights:

1.5 m (AASC) 1.25 – 2.0 m (WMO) 2.0 m (EPA)

See Section 10 for a list of references that discuss temperature and relative humidity sensors.

7.2 Assembly and Mounting

Tools Required:

- 1/2" open end wrench
- small screw driver provided with datalogger
- UV resistant cable ties
- small pair of diagonal-cutting pliers

The HMP155A must be housed inside a radiation shield when exposed to solar radiation. The 41005-5 14-plate radiation shield has a U-bolt for attaching the shield to tripod mast / tower leg (FIGURE 4-1 in Section 4, *Quickstart*), or CM200 series crossarm (FIGURE 4-2 in Section 4, *Quickstart*). The radiation shield ships with the U-bolt configured for attaching the shield to a vertical pipe. Move the U-bolt to the other set of holes to attach the shield it to a crossarm.

7.3 Wiring

Connections to Campbell Scientific dataloggers are given in TABLE 7-1 through TABLE 7-3. The probe can be measured by two single-ended or differential analog input channels (recommended for lead lengths > 6.1 m (20 ft.), see Section 7.5). The CR200(X)-series dataloggers only have single-ended channels.

	TABLE 7-1. Connections for Single-Ended Measurements					
Color	Wire Label	CR10X	CR1000, CR3000, CR800, CR5000, CR23X	CR10, CR510, CR500	21X, CR7	CR200(X)
Yellow	Temp Signal	Single-Ended Input	Single-Ended Input	Single-Ended Input	Single-Ended Input	Single-Ended Input
Blue	RH Signal	Single-Ended Input	Single-Ended Input	Single-Ended Input	Single-Ended Input	Single-Ended Input
White	Signal Reference	AG	÷	AG	÷	÷
Black	Signal Ground	AG	÷	AG	÷	÷
Clear	Shield	G	÷	G	÷	÷
Red	Power SW12V	SW12V	SW12V	12V/SW12V*	12V/SW12V*	SW Power
		If using SW12V, jumper from SW12V Control to Control Port				

*On these dataloggers switched power is only available with the SW12V peripheral.

	TABLE 7-2. Co	onnections for Diffe	rential Measure	ements	
Color	Wire Label or Description	CR10X	CR1000, CR3000, CR800, CR5000, CR23X	CR10, CR510, CR500	21X, CR7
Yellow	Temp Signal	Differential Input – H	Differential Input – H	Differential Input – H	Differential Input – H
	Jumper to White	Differential Input – L	Differential Input – L	Differential Input – L	Differential Input – L
Blue	RH Signal	Differential Input – H	Differential Input – H	Differential Input – H	Differential Input – H
White	Signal Reference	Differential Input – L	Differential Input – L	Differential Input – L	Differential Input – L
Black	Signal Ground	G	G	G	÷
Clear	Shield	G	÷	G	÷
Red	Power SW12V	12V/SW12V	12V/SW12V	12V/SW12V*	12V/SW12V*
		If using SW12V, jumper from SW12V Control to Control Port			

*On these dataloggers switched power is only available with the SW12V Power Switch (ordered separately).

TABLE 7-3. Power Connections using SW12V Power Switch					
]	HMP155A	SW12V I	Perip	oheral	Datalogger
Color	Description	Terminal		Wire	
Red	Power	SW12V		Red	12 V
Black	Power Ground	GND		Black	G*
				Green	Control Port

*The black wire of the SW12V should be connected to the type of datalogger ground channel recommended for the HMP155A black wire as listed in TABLE 7-1 and TABLE 7-2.

7.4 Programming

This section is for users who write their own datalogger programs. A datalogger program to measure this sensor can be created using Campbell Scientific's SCWin. You do not need to read this section to use SCWin.

The temperature and relative humidity signals from the HMP155A can be measured using a single-ended analog measurement or a differential analog measurement.

Use a single-ended analog measurement when the HMP155A signal lead length is less than 6.1 m (20 ft.) or if the probe will be turned on and off under datalogger control between measurements. For lead lengths greater than 6.1 m (20 ft.) or when the probe will be continuously powered, use a differential analog measurement. For a discussion on errors caused by long lead lengths see Section 7.5.

NOTE HMP155 sensors purchased directly from Vaisala with serial numbers < E4430001 require approximately 5 seconds warm up time.

The HMP155A output scale is 0 to 1000 millivolts for the temperature range of -80° to $+60^{\circ}$ C (-112 to $+140^{\circ}$ F) and for the relative humidity range of 0 to 100%. Multipliers and offsets for converting voltage to temperature and relative humidity are listed in TABLE 7-4 and TABLE 7-5 respectively.

TABLE 7-4. Parameters for Temperature			
Units	Multiplier (degrees mV ⁻¹)	Offset (degrees)	
Celsius	0.14	-80	
Fahrenheit	0.252	-112	

TABLE 7-5. Parameters for Relative Humidity			
Units	Multiplier (% mV ⁻¹)	Offset (%)	
Percent	0.1	0	
Fraction	0.001	0	

Т	TABLE 7-6. Wiring for Single-ended Measurement Examples			
Color	Description	CR1000	CR10(X)	
Yellow	Temperature	SE 2 (1L)	SE 3 (2H)	
Blue	Relative Humidity	SE 1 (1H)	SE 4 (2L)	
White	Signal Reference	÷	AG	
	Jumper from SW12V Control		C1	
Red	Power	SW12V	SW12 V	
Black	Power Ground	÷	AG	
Clear	Shield	÷	G	

7.4.1 CR1000 Program Using Single-Ended Measurement Instructions Using SW12V on Datalogger

```
'CR1000 program to measure HMP155A with single-ended measurements
Public AirTC
Public RH
DataTable(Temp_RH,True,-1)
DataInterval(0,60,Min,0)
  Average(1,AirTC,IEEE4,0)
  Sample(1,RH,IEEE4)
EndTable
BeginProg
  \tilde{S}can(5, Sec, 1, 0)
    'HMP155A Temperature & Relative Humidity Sensor measurements AirTC and RH:
    PortSet (9,1)
    Delay(0,2,Sec)
    VoltSE(AirTC,1,mV2500,2,0,0,_60Hz,.14,-80)
    VoltSE(RH,1,mV2500,1,0,0,_60Hz,0.1,0)
    PortSet (9,0)
    If RH>100 And RH<108 Then RH=100
    CallTable(Temp_RH)
  NextScan
EndProg
```

7.4.2 CR10(X) Program Using Single-Ended Measurement Instructions Using SW12V on Datalogger

;Turr	the HMP155	A on.	
;			
01:1	Jo (P86)		
1:	41	Set Port 1 High	;Jumper wire from SW12V control to C1 ;Green wire (C1) if using SW12V Power Switch ;For CR23X or CR5000 use 49 for SW12V internal ;control port
;Pau ;proł	se 2 seconds b be can stabilize	efore making measurements s e on true readings.	to the
$02 \cdot 1$	Excitation with	Delay (P22)	
1.	1	Ex Channel	
1.	1	$D_{a} = W/E_{a}$ (as $t_{a} = 0.01$ as	-)
2:	0	Delay W/Ex (units = 0.01 se	(C)
3:	500	Delay After Ex (units $= 0.01$	sec)
4:	0	mV Excitation	
;Mea	sure the HMP	155A temperature.	
; 03: 1	Volt (SE) (P1)		
1:	1	Reps	
2.	5	2500 mV Slow Range	·CR510_CR500 (2500mv)· CR23X (1000 mV)·
2.	5	2000 m v Blow Range	21Y CR7 (5000 mV)
2.	2		21A, CK7 (5000 mV)
3:	3	SE Channel	; renow wire (SE 3), white or purple wire (AG)
4:	1		
5:	.14	Mult	;See TABLE 7-4 for alternative multipliers
6:	-80	Offset	;See TABLE 7-4 for alternative offsets

;Measure the H	MP155A relative humidity.	
; 04: Volt (SE) (P1)	
1: 1	Reps	
2: 5	2500 mV Slow Range	;CR510, CR500 (2500 mV); CR23X (1000 mV); 21X, CR7 (5000 mV)
3: 4	SE Channel	Blue wire (SE 4), white or purple wire (AG);
4: 2	Loc [RH pct]	
5: .1	Mult	;See TABLE 7-5 for alternative multipliers
6: 0	Offset	
;Turn the HMP	155A off.	
;		
05: Do (P86)		
1: 51	Set Port 1 Low	;Jumper wire from SW12V control to C1
		;Orange wire (C1) if older wiring
		;Green wire (C1) if using SW12V device
		;For CR23X or CR5000 use 59 for SW12V internal ;control port

7.5 Long Lead Lengths

This section describes the error associated with measuring the HMP155A with a single-ended measurement if the probe has a long cable. To avoid these problems, Campbell Scientific recommends measuring the HMP155A using a differential analog measurement (Instruction 2) when long lead lengths are required. Generic datalogger connections for measuring the HMP155A using a differential measurement are given in TABLE 7-2.

Understanding the details in this section is not required for the general operation of the HMP155A with Campbell Scientific's dataloggers.

The signal reference (white) and the power ground (black) are in common inside the HMP155A. When the HMP155A temperature and relative humidity are measured using a single-ended analog measurement, both the signal reference and the power ground are connected to ground at the datalogger. The signal reference and the power ground both serve as the return path for 12 V. There will be a voltage drop along those leads because the wire itself has resistance. The HMP155A draws approximately 4 mA when it is powered. The wire used in the HMP155A (pn 9721) has resistance of 27.7 Ω /1000 feet. Since the signal reference and the power ground are both connected to ground at the datalogger, the effective resistance of those wires together is half of 27.7 Ω /1000 feet, or 13.9 Ω /1000 feet. Using Ohm's law, the voltage drop (V_d), along the signal reference/power ground, is given by Eq. (1).

$$V_d = I * R$$

= 4 mA * 13.9 \Omega / 1000 ft (1)
= 55.6 mV / 1000 ft

This voltage drop will raise the apparent temperature and relative humidity because the difference between the signal and the signal reference lead, at the datalogger, has increased by V_d . The approximate error in temperature and

	TABLE 7-7. Wiring Differential Measurement	g for Examples	
Color	Description	CR1000	CR10(X)
Yellow	Temperature	2H	2Н
	Jumper to 1L	2L	2L
Blue	Relative Humidity	1H	1H
White	Signal Reference	1L	1L
	Jumper from SW12V Control		C1
Red	Power	SW12 V	SW12 V
Black	Power Ground	G	G
Clear	Shield	÷	G

relative humidity is 0.56°C and 0.56% per 100 feet of cable length, respectively.

7.5.1 CR1000 Program Using Differential Measurement Instructions Using SW12V on Datalogger

```
'CR1000 program to measure HMP155A with differential measurements
Public AirTC
Public RH
DataTable(Temp_RH,True,-1)
  DataInterval(0,60,Min,0)
  Average(1,AirTC,IEEE4,0)
  Sample(1,RH,IEEE4)
EndTable
BeginProg
  Scan(5, Sec, 1, 0)
    'HMP155A Temperature & Relative Humidity Sensor measurements AirTC and RH:
    PortSet (9,1)
    Delay(0,2,Sec)
    VoltDiff (AirTC, 1, mV2500, 2, True, 0, _60Hz, .14, -80)
    VoltDiff (RH,1,mV2500,1,True,0,_60Hz,0.1,0)
PortSet (9,0)
    If RH>100 And RH<108 Then RH=100
    CallTable(Temp_RH)
  NextScan
EndProg
```

; 01: Do (P86) 1: 41 Set Port 1 High ;Jumper wire from SW12V control to C1 ;Green wire (C1) if using SW12V device ;For CR23X or CR5000 use 49 for SW12V in ;control port	ternal
01: Do (P86)1: 41Set Port 1 High;Green wire from SW12V control to C1;Green wire (C1) if using SW12V device;For CR23X or CR5000 use 49 for SW12V in:control port	ternal
;Pause 2 seconds before making measurements so the	
;probe can stabilize on true readings.	
;	
02: Excitation with Delay (P22)	
1: 1 Ex Channel	
2: 0 Delay W/Ex (units = 0.01 sec)	
3: 500 Delay After Ex (units = 0.01 sec)	
4: 0 mV Excitation	
;Measure the HMP155A temperature.	
03: Volt (Diff) (P2)	
1: 1 Keps 2: 5 2500 ± 1000 Reps (D510, CD500, (2500, 1000))	7
2: 5 2500 mV Slow Range ; $CR510$, $CR500$ (2500mV); $CR23X$ (1000 mV) 21X, $CR7$ (5000 mV));
3: 2 DIFF Channel ;Yellow wire (2H), jumper (2L to 1L)	
4: 1 Loc [T_C]	
5: .14 Mult ;See TABLE 7-4 for alternative multipliers	
6: -80 Offset ;See TABLE 7-4 for alternative offsets	
;Measure the HMP155A relative humidity.	
;	
04: Volt (Diff) (P2)	
1: 1 Reps	
2: 5 2500 mV Slow Range ;CR510, CR500 (2500mv); CR23X (1000 mV) 21X, CR7 (5000 mV));
3: 1 DIFF Channel ;Blue wire (1H), white or purple wire (1L)	
4: 2 Loc [RH_pct]	
5: .1 Mult ;See TABLE 7-5 for alternative multipliers	
6: 0 Offset	
;Turn the HMP155A off.	
; 05: Do (P86)	
1. 51 Set Port 1 Low · Jumper wire from SW12V control to C1	
Green wire (C1) if using SW12V device	
For CR23X or CR5000 use 59 for SW12V in	ternal
control port	

7.5.2 CR10(X) Program Using Differential Measurement Instructions Using SW12V on Datalogger

7.6 Absolute Humidity

The HMP155A measures relative humidity. Relative humidity is defined by the equation below:

$$RH = \frac{e}{e_s} * 100$$
 (2)

where RH is the relative humidity, e is the vapor pressure in kPa , and e_s is the saturation vapor pressure in kPa. The vapor pressure, e, is an absolute measure of the amount of water vapor in the air and is related to the dewpoint temperature. The saturation vapor pressure is the maximum amount of water vapor that air can hold at a given air temperature. The relationship between dewpoint and vapor pressure, and air temperature and saturation vapor pressure are given by Goff and Gratch (1946), Lowe (1977), and Weiss (1977).

When the air temperature increases, so does the saturation vapor pressure. Conversely, a decrease in air temperature causes a corresponding decrease in saturation vapor pressure. It follows then from Eq. (2) that a change in air temperature will change the relative humidity, without causing a change absolute humidity.

For example, for an air temperature of 20°C and a vapor pressure of 1.17 kPa, the saturation vapor pressure is 2.34 kPa and the relative humidity is 50%. If the air temperature is increased by 5°C and no moisture is added or removed from the air, the saturation vapor pressure increases to 3.17 kPa and the relative humidity decreases to 36.9%. After the increase in air temperature, the air can hold more water vapor. However, the actual amount of water vapor in the air has not changed. Thus, the amount of water vapor in the air, relative to saturation, has decreased.

Because of the inverse relationship between relative humidity and air temperature, finding the mean relative humidity is meaningless. A more useful quantity is the mean vapor pressure. The mean vapor pressure can be computed online by the datalogger as shown in the following examples.

TABLE 7-8. Wiring for Vapor Pressure Examples				
Color	Description	CR1000	CR10(X)	
Yellow	Temperature	SE 2 (1L)	SE 3 (2H)	
Blue	Relative Humidity	SE 1 (1H)	SE 4 (2L)	
White	Signal Reference	÷	AG	
	Jumper from SW12V Control		C1	
Red	Power	SW12V	SW12 V	
Black	Power Ground	÷	AG	
Clear	Shield	÷	G	

7.6.1 CR1000 Program that Computes Vapor Pressure and Saturation Vapor Pressure

```
'CR1000 program that calculates Vapor Pressure
Public AirTC
Public RH
Public RH_Frac, e_Sat, e_kPa
DataTable(Temp_RH,True,-1)
 DataInterval(0,60,Min,0)
 Average(1,AirTC,IEEE4,0)
 Sample(1,RH,IEEE4)
  Sample(1,e_kPa,IEEE4)
EndTable
BeginProg
 Scan(5,Sec,1,0)
    'HMP155A Temperature & Relative Humidity Sensor measurements AirTC and RH:
   PortSet (9,1)
   Delay(0,2,Sec)
   VoltSE(AirTC,1,mV2500,2,0,0,_60Hz,.14,-80)
   VoltSE(RH,1,mV2500,1,0,0,_60Hz,0.1,0)
   PortSet (9,0)
   If RH>100 And RH<108 Then RH=100
    'Calculate Vapor Pressure
    'Convert RH percent to RH Fraction
   RH_Frac = RH * 0.01
    'Calculate Saturation Vapor Pressure
   SatVP(e_Sat, AirTC)
    'Compute Vapor Pressure, RH must be a fraction
   e_kPa = e_Sat * RH_Frac
   CallTable(Temp_RH)
 NextScan
EndProg
```

7.6.2 CR10(X) Program that Computes Vapor Pressure and Saturation Vapor Pressure

;Turn the	e HMP155A on.	
;		
01: Do ((P86)	
1: 41	1 Set Port 1 High ;. ;' ;'	<i>Jumper wire from SW12V control to C1</i> <i>Green wire (C1) if using SW12V device</i> <i>For CR23X or CR5000 use 49 for SW12V internal</i> <i>control port</i>
;Pause 5 ;probe co ;	5 seconds before making measurements so can stabilize on true readings.	the
02: Exci	itation with Delay (P22)	
1: 1	Ex Channel	
2: 0	Delay W/Ex (units = 0.01 sec)	
3: 50	00 Delay After Ex (units = 0.01 s	ec)
4: 0	mV Excitation	

;Measure the HMP	P155A temperature.	
; 03: Volt (SE) (P1))	
1: 1	Reps	
2: 5	2500 mV Slow Range	;CR510, CR500 (2500mv); CR23X (1000 mV); 21X, CR7 (5000 mV)
3: 3	SE Channel	;Yellow wire (SE 3), white or purple wire (AG)
4: 1	Loc [T C]	
5: .14	Mult	
6: -80	Offset	
;Measure the HMF	P155A relative humidity.	
, 04: Volt (SE) (P1))	
1: 1	Reps	
2: 5	2500 mV Slow Range	;CR510, CR500 (2500mv); CR23X (1000 mV); 21X, CR7 (5000 mV)
3: 4	SE Channel	Blue wire (SE 4), white or purple wire (AG)
4: 2	Loc [RH frac]	$\mathbf{r} = \mathbf{r} + \mathbf{r}$
5: .001	Mult	
6: 0	Offset	
;Turn the HMP155	5A off.	
, 05: Do (P86)		
1: 51	Set Port 1 Low	;Jumper wire from SW12V control to C1 ;Green wire (C1) if using SW12V device ;For CR23X or CR5000 use 59 for SW12V internal :control port
<i>;Compute the satur</i> <i>;The temperature r</i>	ration vapor pressure. nust be in degrees Celsius.	
;	D (D50)	
06: Saturation Vaj	por Pressure (P56)	
	Temperature Loc [T_C]
2: 3	Loc [e_sat]	
;Compute the vapo ;Relative humidity	or pressure. must be a fraction.	
; 07: Z=X*Y (P36)		
1: 3	X Loc [e sat]	
2: 2	Y Loc [RH frac]	
3: 4	Z Loc [e]	

8. Sensor Maintenance

The HMP155A Probe requires minimal maintenance. Check monthly to make sure the radiation shield is free from debris. The filter at the end of the sensor should also be checked for contaminates.

8.1 Periodic Maintenance

8.1.1 Cleaning

Clean the probe with a soft, lint-free cloth moistened with mild detergent.

8.1.2 Changing the Probe Filter

- 1. Remove the filter from the probe.
- 2. After removing the filter, check the O-ring and change it if necessary.
- 3. Install a new filter on the probe.

New filters can be ordered from Campbell Scientific or Vaisala.

FIGURE 8-1. Changing the filter

The following numbers refer to FIGURE 8-1 above:

1=Filter

2=O-ring

- 3=HUMICAP[®] sensor
- 4 Pt100 temperature sensor

When installed in close proximity to the ocean or other bodies of salt water, a coating of salt (mostly NaCl) may build up on the radiation shield, sensor, filter and even the chip. NaCl has an affinity for water. The humidity over a saturated NaCl solution is 75%. A buildup of salt on the filter or chip will delay or destroy the response to atmospheric humidity.

The filter can be rinsed gently in distilled water. If necessary, the chip can be removed and rinsed as well. Do not scratch the chip while cleaning.

Long term exposure of the HUMICAP[®] relative humidity sensor to certain chemicals and gases may affect the characteristics of the sensor and shorten its life. TABLE 8-1 lists the maximum ambient concentrations, of some chemicals, that the HUMICAP[®] can be exposed to.

TABLE 8-1. Chemical Tolerances of HMP155A				
Chemical	Concentration (PPM)			
Organic solvents	1000 to 10,000			
Aggressive chemicals (e.g., SO ₂ , H ₂ SO ₄ , H ₂ S, HCl, Cl ₂ , etc.)	1 to 10			
Weak Acids	100 to 1000			
Bases	10,000 to 100,000			

Recalibrate the HMP155A annually. Obtain an RMA number before returning the HMP155A to Campbell Scientific for recalibration.

9. Troubleshooting

Symptom: -9999, NAN, -80°C, or 0 % relative humidity

- 1. Check that the sensor is wired to the correct input channels as specified by the measurement instructions.
- 2. Verify the range code is correct for the datalogger type.
- 3. Verify the red power wire is correctly wired to the 12V, Switched 12V, or SW12V Power Switch. The terminal the wire is connected to will depend on the datalogger program.

Connect the red wire to a 12V terminal to constantly power the sensor for troubleshooting purposes. With the red wire connected to12V, a voltmeter can be used to check the output voltage for temperature and relative humidity on the yellow and blue wires respectively (temperature $^{\circ}C = mV * 0.14 - 80.0$; relative humidity % = mV * 0.1).

Symptom: Incorrect temperature or relative humidity

1. Verify the multiplier and offset parameters are correct for the desired units (TABLE 7-4 and TABLE 7-5).

10. References

- AASC, 1985: The State Climatologist (1985) Publication of the American Association of State Climatologists: *Heights and Exposure Standards for Sensors on Automated Weather Stations*, v. 9, No. 4 October, 1985. (www.stateclimate.org/publications/state-climatologist/NOAA-NCY-SCBOOKS-SC77097/00000029.pdf)
- EPA, 2008: Quality Assurance Handbook for Air Pollution Measurement Systems, Vol. IV, Meteorological Measurements, Ver. 2.0, EPA-454/B-08-002 (revised 2008). Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.
- Goff, J. A. and S. Gratch, 1946: Low-pressure properties of water from -160° to 212°F, *Trans. Amer. Soc. Heat. Vent. Eng.*, **51**, 125-164.
- Lowe, P. R., 1977: An approximating polynomial for the computation of saturation vapor pressure, *J. Appl. Meteor.*, **16**, 100-103.
- Meyer, S. J. and K. G. Hubbard, 1992: Nonfederal Automated Weather Stations and Networks in the United States and Canada: A Preliminary Survey, *Bulletin Am. Meteor. Soc.*, **73**, No. 4, 449-457.
- Vaisala, Inc. (2008) HMP155A Humidity and Temperature Probe User Guide, Helsinki, Finland. Text and figures used with permission of Vaisala, Inc.
- Weiss, A., 1977: Algorithms for the calculation of moist air properties on a hand calculator, *Amer. Soc. Ag. Eng.*, **20**, 1133-1136.
- WMO, 2008. Guide to Meteorological Instruments and Methods of Observation. World Meteorological Organization No. 8, 7th edition, Geneva, Switzerland.

Appendix A. Interfacing with HMP155A RS485 Output

A.1 RS485 Interface Options

The HMP155A outputs a 0 to 1 Vdc signal for temperature and relative humidity that can be measured by all models of Campbell Scientific dataloggers with model HMP155ACBL1 cable. The HMP155A also has RS485 outputs for temperature and relative humidity that can be interfaced to the CR800, CR1000, and CR3000 dataloggers with model HMP155ACBL2 cable and the SDM-SIO1 Serial I/O Module. Vaisala also sells a cable with RS485 outputs which is documented in the example programs below.

The MD485 Multidrop Interface can also be used to interface the RS485 outputs to the CR800, CR1000, and CR3000 dataloggers. This option requires a USB to RS485 cable (available from Vaisala) to change the default baud rate of the RS485 output from the default of 4800 to a baud rate supported by the MD485.

A.2 SDM-SIO1 Serial I/O Module Interface Option

The SDM-SIO1 module is used to interface the RS485 outputs of the HMP155A to the datalogger. The SDM-SIO1 functions like a built-in serial port to the datalogger. Data are buffered in the SDM-SIO1 and retrieved by the datalogger using standard program instructions.

The SDM-SIO1 connects to the datalogger's 12V, G, and SDM terminals (C1, C2, C3). Sensor wiring to the SDM-SIO1 and the datalogger is documented in the example program below.

A.2.1 Program Example for SDM-SIO1 Module

The following program sends the commands 'SMODE RUN' and 'R' to enable the RS485 output. SerialInRecord and Mid instructions parse the serial string and put the temperature and relative humidity values into public variables.

```
'CR1000 Series Datalogger
'Sensor Wiring:
'HMP155A with RS485 Output:
 HMP155A
                                                   CR1000
                   HMP155A
                                   SDM-SI01
                                                                 Connector Pin-Out
  CSI
                   Vaisala
 *Cable
                   Cable
' blue
                   pink
                                   Υ
                                                                 6
  yellow
                   brown
                                   Ζ
                                                                 2
                   red
                                                                 8
  black
                                                   G
 red
                   blue
                                                   12V
                                                                 7
                                   0V
 white
                   green
                                                                 3
' shield (clear)
                   black
                                                   Ground
                                                                 not connected
                   grey, pink, brown - NOT used
' *HMP155ACBL2 cable, ordered separately
'Declare Public Variables
Public TempC, RH, NBytesReturned
Public SerialIndest As String * 26
Public String_1 As String
Public String_2 As String
Const SensorPort=32
Const CRLF=CHR(13)+CHR(10)
SequentialMode
'Define Data Tables
DataTable (Table1,1,-1)
  DataInterval (0,15,Min,10)
  Average (1,TempC,FP2,False)
  Sample (1,RH,FP2)
EndTable
'Main Program (for sensor configured for default settings of 4800 baud, E,7,1)
BeginProg
  SerialOpen (SensorPort,4800,58,0,53)
                                           ' buffer = 2*number of bytes + 1
                                           ' SDM-SI01 port 58 for half duplex,7,E,1
  'Strings to start serial output
  String_1 = "SMODE RUN"+CRLF
String_2 = "R"+CRLF
                                           ' set SMODE to "RUN"
                                             send "R" to start serial output
  'Instructions to enable RS485 serial output
  SerialOut (SensorPort,String_1,"RUN",3,100) 'send String_1, wait for 'RUN' response
  Delay (0,500,mSec)
  SerialOut (SensorPort,String_2,"RH",3,100)
                                                 'send String_2
  Scan (5, Sec, 0, 0)
    'Get serial string from sensor
    SerialInRecord (SensorPort, SerialIndest, 00, 24, &HODDA, NBytesReturned, 00) '&HODDA = CRLF
    'Parse RH and temp from string
    RH=Mid (SerialIndest,5,4)
    TempC=Mid (SerialIndest, 17, 4)
```

CallTable Table1 NextScan EndProg

The public variables for temperature and relative humidity can be viewed in the 'Numeric Display' mode as shown below.

🖲 CR1000_NL1	15 Numeric Dis	olay 1: Real Tin	ne Monitoring (Cor	nnected)	
	RecNum	913			
Add	TimeStamp	16:10:06			
	TempC	22.10			
	RH	27.30			
Delete	SerialIndest	6RH T= 22.1 'C			
	NBγtesReturned	23.00			
	StringtoSend	R			
Delete All					
Options					
<u>S</u> top					
<u>H</u> elp					

For troubleshooting purposes, the serial data buffer in the datalogger can be viewed using the 'W' terminal command. This is done by connecting to the datalogger from the 'Connect' button of Loggernet or PC400W. From the Connect screen, select Tools|Terminal Emulator. Click the 'Open Terminal' button, and hit the enter key to get the 'CR1000' prompt. Type 'W' for the 'Serial Comms Sniffer'. Enter 32 for for the SDM-SIO1, and 'Y' for ASCII. Raw serial data received by the buffer is displayed on the screen as shown below.

Terminal Emulator	×
Edit	
Active	
CR1000> CR1000>W	^
1: ComRS232 2: ComME 3: Com310 4: ComSDC7 5: ComSDC8 6: Com320 7: ComSDC10 8: ComSDC11 9: COM1 10: COM2 11: COM3 12: COM4 13: TCP/IP 14: SDM-SI04	III
3247: SDM-SIO1 Select: 32 ASCII (Y)? Y opening 32	
R 13:33:10.00 R 13:33:10.00 R 13:33:10.00 RH= 23.2 %R R 13:33:10.00 H T= 23.9 'C R 13:33:10.00 RH= 23.2 %RH T= 23.8 'C	۲
Select Device CR1000_NL115 🔽 II Caps Mode I Pause	
Baud Rate 115200 Close Terminal Clear <u>H</u> elp	

A.3 MD485 Multidrop Interface Option

The MD485 Multidrop Interface can be used to interface the RS485 outputs of the HMP155A to the datalogger's CS I/O port. Connect the MD485's CS I/O port to the datalogger's CS I/O port with an SC12 cable. Sensor wiring to the MD485 and the datalogger is documented in the example program below.

The HMP155A has a default RS485 baud rate of 4800, which must be changed to 9600 to be compatible with the MD485. To change settings in the HMP155A, Vaisala's USB to RS485 cable is required to interface the HMP155A sensor to a computer. Commands to change settings are sent to the HMP155A using a terminal emulator such as Windows HyperTerm.

Vaisala's USB to RS485 cable includes a CD with drivers that must be installed on the computer before the cable can be used. Insert the CD into the computer's CD drive and follow the prompts.

🗢 Setup - USB Instrument Driver	. 🗆 🔀
Select Destination Location Where should USB Instrument Driver be installed?	
Setup will install USB Instrument Driver into the following folder.	
To continue, click Next. If you would like to select a different folder, click Browse.	
C:\Program Files\Vaisala\USB Instrument Driver Browse.	
At least 1.8 MB of free disk space is required.	
Vaisala Oyj	Cancel

Use the Device Manager in Windows to determine which COM port the USB/RS485 cable was assigned:

📙 Device Manager	- 🗆 🗙
File Action View Help	
 Display adapters DVD/CD-ROM drives Floppy disk controllers Floppy disk drives Human Interface Devices DE ATA/ATAPI controllers Keyboards Mice and other pointing devices Modems Monitors Network adapters Ports (COM & LPT) Communications Port (COM1) ECP Printer Port (LPT1) Intel(R) Active Management Technology - SOL (COM3) Prolific USB-to-Serial Bridge (COM7) Vaisala USB Instrument (COM8) Processors 	
E - Sound, video and game controllers	~

Configure Windows HyperTerminal for the appropriate COM port (for example, COM8 in the example above) for the default HMP155A RS485 settings of 4800 baud, 7, E, 1.

COM6 Properties	? 🛛
Port Settings	
Bits per second: 480	0
Data bits: 7	
Parity: Eve	n 💌
Stop bits: 1	~
Elow control: Not	
	Restore Defaults
ОК	Cancel Apply

Using HyperTerminal, send the following commands to the HMP155A:

VERS[enter] to get a response from the sensor; for example, HMP155A 1.26 SERI[enter] to get the current RS485 settings; for example, 4800 E 7 1 SERI 9600 N 8 1[enter] to change the RS485 settings; response should be 9600 N 8 1

R[enter] to put the sensor in the Run mode to output continuous measurements

Responses to the commands are shown in the screen capture below.

After the settings have been changed, change the baud rate in HyperTerminal to 9600, and make sure the relative humidity and temperature string is being displayed before connecting the sensor to the MD485.

A.3.1 MD485 Multidrop Interface Configuration

Device Configuration	Utility Beta 1.12	
File Options Help		
Device Type	Deployment Settings Editor Terminal Send OS	
CR23X-PB CR23X-TD CR3000 CR5000 CR510-PB CR510-TD CR500 Series CR9000X CR500 Series CR9000X NL100 RF400 RF400 RF401 RF401 RF401 RF401 RF401 SDM-S101 SDM-S101 SMM/ TGA100A Unknown	Serial Number: Active Ports: C5 I/O and RS-485 C5 I/O Mode: SDC Address 7 Protocol Configuration: Transparent Communication C5 I/O ME Baud Rate: 9600 RS-232 Baud Rate: 9600 MD9 Address: 255 	
PC Serial Port	Serial Number	
СОМ1	Specifies the MD485 Serial Number.	
Baud Rate 9600 V Disconnect	Apply Cancel Factory Defaults Read File Summary	

Using the Device Configuration Utility, configure the MD485 as shown below.

Connect the MD485's CS I/O port to the datalogger's CS I/O port using an SC12 cable. Use the HMP155ACBL2 to connect the HMP155A sensor to the MD485 and the datalogger (CR1000, CR800, or CR3000) as shown in the following table. The table also shows wiring for cables purchased from Vaisala.

HMP155A CSI Cable	HMP155A Vaisala Cable	MD485	CR1000	Connector Pin-Out
Blue	Pink	В		6
Yellow	Brown	А		2
Black	Red		G	8
Red	Blue		12V	7
White	Green		Ground	3
Shield (clear)	Black		Ground	Not Connected
	Grey, Pink, Brown - NOT used			

A.3.2 CR1000 Example Program for use with MD485

The following program sends the commands 'SMODE RUN' and 'R' to enable the RS485 output. SerialInRecord and Mid instructions parse the serial string and put the temperature and relative humidity values into public variables.

```
'CR1000 Series Datalogger
'Change HMP155A default serial settings from 4800,E,7,1 To 9600,N,8,1:
' Sensor Wiring:
' *CSI cable
                   Vaisala cable MD485
                                                    CR1000
                                                                  Connector Pin-Out
                   pink
 b]ue
                                    В
                                                                  6
 yellow
                   brown
                                    A
                                                                  2
                   red
                                                    G
                                                                  8
 black
                   blue.
                                                    12V
                                                                  7
 red
                                    Ground
 white
                                                                  3
                   green
 shield (clear)
                   Black
                                                    Ground
                                                                  not connected
                   grey, pink, brown - NOT used
'MD485 settings:
' CS I/O AND RS-485
 SDC Address 7
' Transparent Communication
 RS485 baud 9600
' *HMP155ACBL2, ordered separately
'Connect CS I/O port of MD485 to CS I/O port on CR1000 with SC12 cable.
Public NBytesReturned As Long
Public SerialIndest As String * 26
Public RHArray(2) As String
 Alias RHArray(1)=RH
 Alias RHArray(2)=TempC
Public String_1 As String
Public String_2 As String
Const SensorPort=32
Const CRLF=CHR(13)+CHR(10)
SequentialMode
'Define Data Tables
DataTable (Table1,1,-1)
DataInterval (0,15,Min,10)
Average (1, TempC, FP2, False)
Sample (1,RH,FP2)
EndTable
'Main Program (for sensor configured for default settings of 4800 baud, E,7,1)
BeginProg
 SerialOpen (SensorPort, 4800, 58, 0, 53) ' buffer = 2*number of bytes + 1
  ' SDM-SI01 port 58 for half duplex,7,E,1
  'Strings to start serial output
 String_1 = "SMODE RUN"+CRLF ' set SMODE to "RUN"
String_2 = "R"+CRLF ' send "R" to start serial output
  'Instructions to enable RS485 serial output
 SerialOut (SensorPort, String_1, "RUN", 3, 100) 'send String_1, wait for 'RUN' response
  Delay (0,500,mSec)
  SerialOut (SensorPort,String_2,"RH",3,100) 'send String_2
 Scan (5, Sec, 0, 0)
    'Get serial string from sensor
    SerialInRecord (SensorPort, SerialIndest, 00, 24, & HODOA, NBytesReturned, 00) '& HODOA = CRLF
```

```
'Parse RH and temp from string
SplitStr (RHArray(1),SerialIndest,"=",2,0)
CallTable Table1
NextScan
EndProg
```

The public variables for temperature and relative humidity can be viewed in the 'Numeric Display' mode as shown below.

N CR1000_NL1	15 Numeric Dis	play 1: Real Tin	ne Monitoring (Cor	nnected)	
	RecNum	913			
Add	TimeStamp	16:10:06			
	TempC	22.10			
	RH	27.30			
Delete	SerialIndest	6RH T= 22.1 'C			
	NBytesReturned	23.00			
	StringtoSend	R			
Delete All					
Options					
<u>S</u> top					
Help					

For troubleshooting purposes, the serial data buffer in the datalogger can be viewed using the 'W' terminal command. This is done by connecting to the datalogger from the 'Connect' button of Loggernet or PC400W. From the Connect screen, select Tools|Terminal Emulator. Click the 'Open Terminal' button, and hit the enter key to get the 'CR1000' prompt. Type 'W' for the 'Serial Comms Sniffer'. Select '4' for 'ComSDC7', and 'Y' for ASCII. Raw serial data received by the buffer is displayed on the screen as shown below.

🚟 Terminal Emulator	×
Edit	
Active	
CR1000>W	^
1: ComRS232 2: ComME 3: Com310 4: ComSDC7 5: ComSDC8 6: Com320 7: ComSDC110 8: ComSDC11 9: Com1 10: Com2 11: Com3 12: Com4 13: TCP/IP 14: SDM-SI04 3247: SDM-SI01 Select: 4 RSCII (Y)? Y opening 4	
hit ESC to exit, any other key to renew possible 40 second timeout	
R 08:04:44.02 RH= 22.7 %RH T= 21.9 'C	~
Select Device CR1000_NL115 V All Caps Mode Pause	
Baud Rate 115200 💌 Close Terminal Clear <u>H</u> elp	

Campbell Scientific, Inc. (CSI)

815 West 1800 North Logan, Utah 84321 UNITED STATES www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)

PO Box 2450 Somerset West 7129 SOUTH AFRICA www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)

PO Box 8108 Garbutt Post Shop QLD 4814 AUSTRALIA www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific do Brasil Ltda. (CSB)

Rua Apinagés, nbr. 2018 — Perdizes CEP: 01258-00 — São Paulo — SP BRASIL www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)

11564 - 149th Street NW Edmonton, Alberta T5M 1W7 CANADA www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)

300 N Cementerio, Edificio Breller Santo Domingo, Heredia 40305 COSTA RICA www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)

Campbell Park 80 Hathern Road Shepshed, Loughborough LE12 9GX UNITED KINGDOM www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)

3 Avenue de la Division Leclerc 92160 ANTONY FRANCE www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Spain, S. L.

Avda. Pompeu Fabra 7-9, local 1 08024 Barcelona SPAIN www.campbellsci.es • info@campbellsci.es